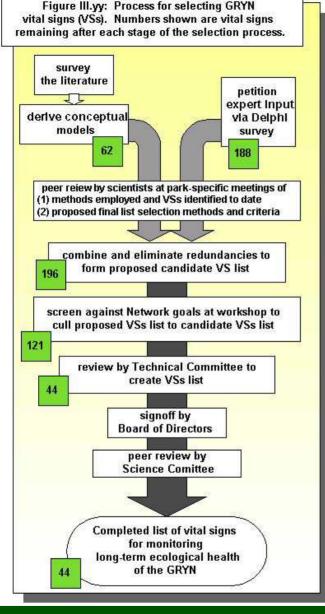


A 2003 case study from the Greater Yellowstone Network on Choosing Vital Signs


By Cathie Jean Program Manager

_	н	•	·	B HOULESS E			9	
	Resource /	Selected Vital Signs	Existing Program	Requires GRYN Funding (y=yes,	Тор	Park relevance		
1	Ecological Organization		(p=partial, n=no)	n=no, o=needs outside funding)	Priorities	GRTE	YELL	BICA
2	Aquatic Biotic	Exotic aquatic community structure and composition	р	Y	Х	х	х	
3	Aquatic (water)	Springs and seeps distribution and hydrology	n	Y	Х	х		х
4	Aquatic (water)	Streamflow	р	Y	Х	х	х	х
5	Aquatic (water)	Water chemistry	р	Y	Х	х	х	х
6	Aquatic (water)	River invertebrate assemblages	р	Y	Х	х	х	х
7	Climatic	Basic climatological measurements	р	Y	X	х	х	х
8	Terrestrial Biotic	Amphibian occurrence	р	Y	X	х	х	х
9	Terrestrial Biotic	Whitebark pine decline	р	Y	X	х	х	
10	Geologic (geothermal)	Heat flow - Chloride flux	р	Y	Х	х	х	
11	Human	Land-use change and habitat fragmentation	р	Y	X	х	х	х
12	Terrestrial Biotic	Exotic plant species abundance and distribution	р	Y	Х	х	х	х
13	Aquatic Biotic	Native aquatic community structure, composition, stability and genetic integrity	р	Y		х	х	х
14	Aquatic Biotic	Algal species composition and biomass	n	Y		х	х	х
15	Aquatic Biotic	E. coli (Escherichia coli)	р	Y				х
16	Aquatic (water)	Groundwater quantity and quality	р	Y		х	х	х
17	Aquatic (water)	Reservoir elevation		N		х		х
18	Aquatic (water)	Continuous water temperature	р	Y		х	х	х
19	Atmospheric	Atmospheric deposition of nitrogen, sulfur and all major anions and cations (including wet and dry deposition)	р	Y		х	х	х
20	Atmospheric	Change in visibility deciviews	р	Y		х	х	х
21	Climatic	Glacial retreat or advance		Y		х		
	Geologic	Stream sediment transport	q	Y		х	х	х

Choosing Vital Signs:

- Nominating
- Filtering and ranking
- Choosing and selecting priorities
- Peer review
- Approval

GRYN Vital Signs Planning Schedule

October 2002

September 2002

February 2003

> March 2003

May 2003

June 2003

July 2003

September 2003

December 2004

December 2005 Develop institutional framework for I&M Program

- summarize information and concepts for vital signs monitoring
- solicit expert opinion to expand science foundation

Identify Vital Signs

- define attributes and criteria to filter and rank vital signs
- · sponsor park workshops to solicit input from park staff
- refine criteria and apply to candidate list

Sponsor workshop to solicit expert opinion

- present objectives to Technical Planning Committee and Science Committee
- solicit Superintendents' review and approval

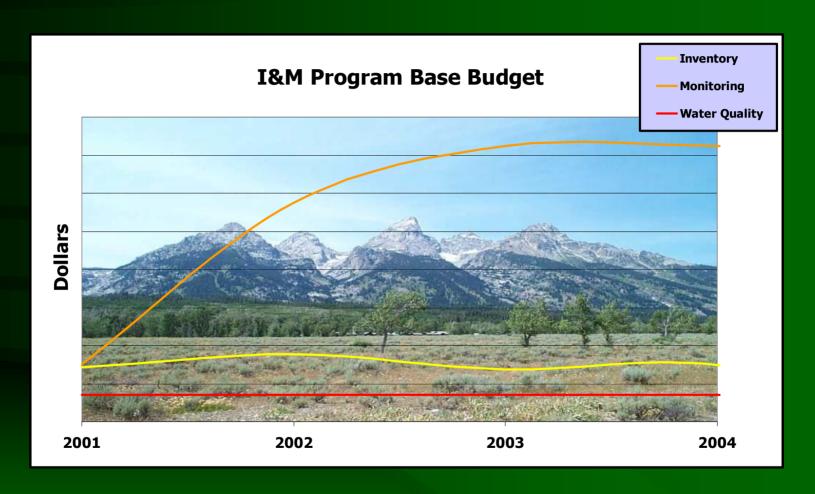
Submit Phase II Report for peer review

Develop sampling design and protocols

- · data management plans
- submit Monitoring Plan for peer review

♦ Submit Final Vital Signs Monitoring Plan

Phase I


(Chapters II, III)

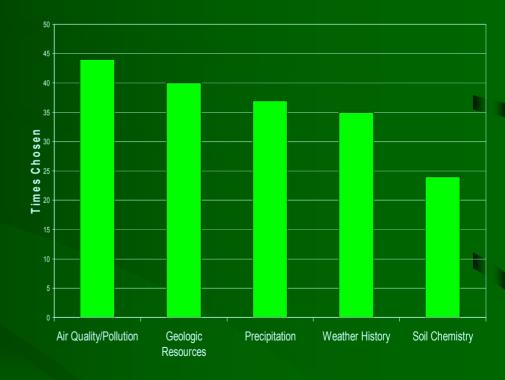
Phase II (Chapters II, III,

Phase III (Chapters I-XII)

GRYN Program Funding

Vital Signs identified using a Delphi Internet survey

- Delphi nominated Vital Signs
- Glacial retreat and advance
- Weather measurements
- Forest carnivores
- Noise (Soundscape)



Delphi I-III: Participants nominate and rank candidate vital signs (CVS)

• We evaluated:

- 188 CVS divided into 8 categories
- Average importance value assigned to each CVS.
- Sample size <20 per CVS.

Delphi Importance Score

- Importance Score
 - 5 = Highly Important
 - 4 = Very Important
 - 3 = Moderately
 Important
 - 2 = Slightly Important
 - 1 = Not at all important
- 0 = No answer provided

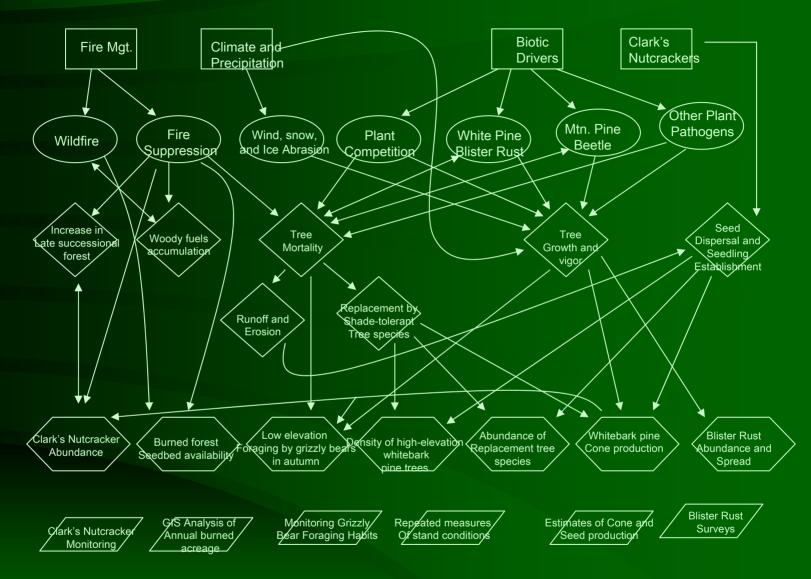
AID OLIAL IT	VINDIOATO	DO.			
AIR QUALITY INDICATORS					
Importance Score	Measurement	Explanation			
Change in Visibility deciviews	Change in Visibility deciviews	Change in Visibility deciviews			
4	4	YELL and GRTE are Class 1 areas. Threats to visibility from new energy development near all three parks are imminent.			
4	4	Important for Class I YELL and GRTE, but already measured by IMPROVE, so I&M doesn't need to fund			
Importance Score	Measurement				
Change in Visibility	Change in Visibility				
deciviews	deciviews				
Average					
0.32					
		(N = number who actually answered each)			
N=24	N=19				
		Importance Score			
6		5 = Highly Important			
7	Change in 8	4 = Very Important			
8	Direct Measure 7	3 = Moderately Important			
3	Indirect measure 0	2 = Slightly Important			
0	Patterns of 4	1 = Not at all important			
6	11	0 = No answer provided			
30	30	Total			

Delphi III- Air Quality Indicators

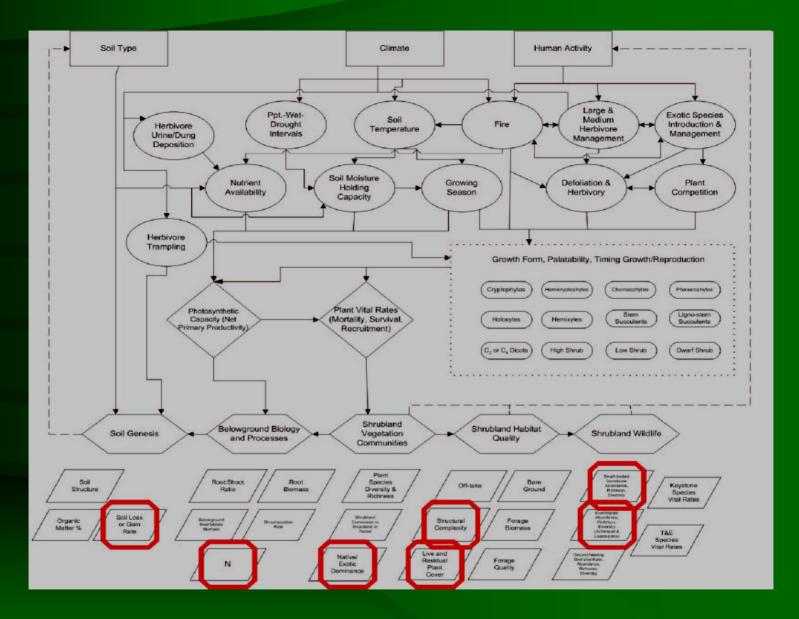
Loading chem species in snowpacks	3.85
Atmospheric deposition of S	3.78
Acid neutralizing capacity in headwater la 3.54	kes
Accumulation toxic air contaminants in bi	ota 3.52
Change in visibility deciviews	3.52
Atmospheric deposition on N	3.46
Loss of forest productivity 3.46	
Ozone exposure indexW126	3.14

Lessons learned: Delphi

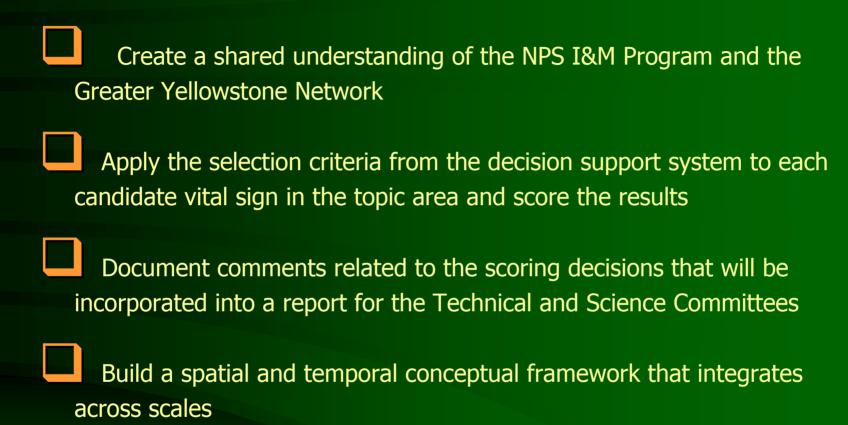
- Benefits: Obtain many ideas from a large audience
- Participants dispersed in time and space, e.g. no face to face interaction or group think
- Rapid and efficient (no travel time or costs)
- Valuable feedback opportunities
- Disadvantages: Numerous authors submitted incongruent vital sign names and definitions.
- No certainly that the participants understand the subject material or the ranking process.
- Our conclusion: Our approach good as a vital signs nomination process but the ranking process will not substitute for a more defensible ranking and decision process


Conceptual Model Approach

- Conceptual models helped us identify and communicate important components of the ecosystem and the interactions among them.
 - We used schematic and narrative models to evaluate terrestrial and aquatic drivers, stressors, responses, outcomes and suggest potential indicators



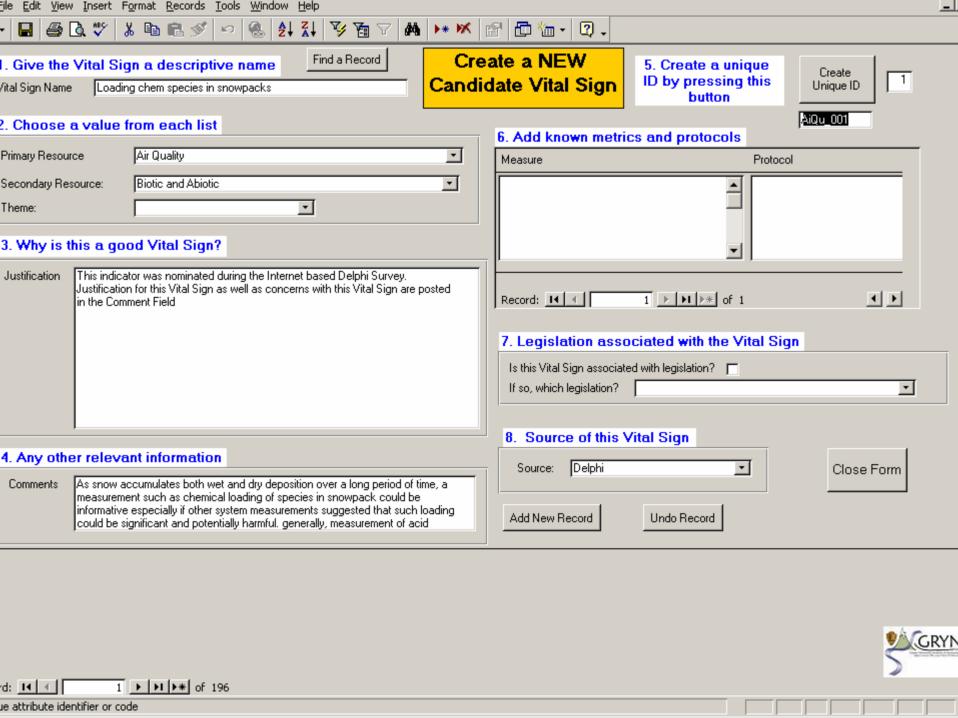
Draft Whitebark Pine Model - Tinker



Conceptual Model Indicators

- Benefits: Ecological relevance of candidate vital signs tied to ecosystem drivers, stressors and outcomes
- Candidate Vital Signs supported with scientific literature
- Good communication tool
- Disadvantages: Framework generalized to cover broad terrestrial and aquatic ecosystem types; small special case situations and large scale regional indicators potentially overlooked.

Vital Signs Workshop Goals



All Candidate Vital Signs

Grouped by Primary and Secondary Resource

D	Grouped by Primary and Secondary Resource					
Resource	Candidate Vital Sign					
Air Quality						
Biotic	and Abiotic					
	Accumulation of toxic air contaminants in biota	AiQu_004				
	Acid Neutralizing Capacity in headwater lakes	AiQu_003				
	Atmospheric deposition of N	AiQu_006				
	Atmospheric deposition of S	AiQu_002				
	Change in visibility deciviews	AiQu_005				
	Deposition of trace organics and metals	AiQu_010				
	Loading chem species in snowpacks	AiQu_001				
	Loss of forest productivity	AiQu_007				
	Nitrogen concentration in streams during spring snowmelt	AiQu_009				
	Ozone exposure indexW126	AiQu_008				
	Vegetation chemistry	AiQu_207				
Aquatic Comm	nunities					
Aqua	tic Exotic species					
	Exotic fish abundance	AqCo_130				
	Exotic fish distribution patterns	AqCo_131				
Aqua	tic Patho gens/disease					
	Fish pathogens/disease	AqCo_133				

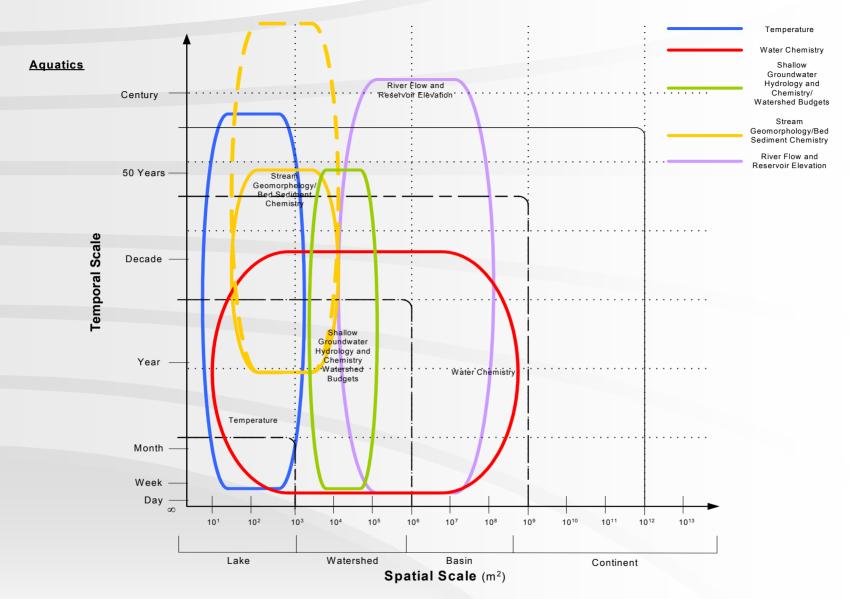
Vital Signs Selection Criteria

- Ecological Relevance
- Response Variability
- Management Relevance
- Feasibility of Implementation
- Interpretation and Utility

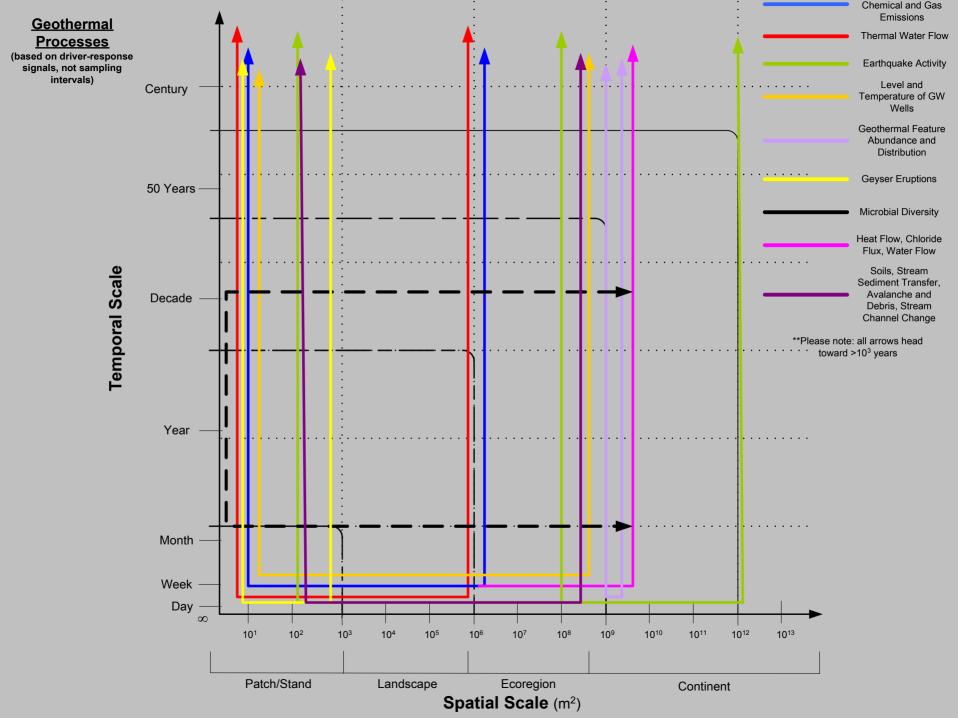
Greater Yellowstone Network Vital Signs Planning Workshop - Bozeman, MT. May 6-8, 2003

•¶ • Vital·Sign:··→ → → → → • Primary·Resource:··¶ Secondary·Resource:··¶ ¶	→ →	¶	Parks that this Vital Sign applies to:¶ ¶ YELL+GRTE → BICA¶
■ VITAL SIGN CRITERON::	Yes	Nox	Comments
Ecological Relevance ¶ • → The candidate vital sign has high ecological import with a demonstrated linkage between the vital sign the ecological structure or function that it is suppose represent, based on a conceptual model and/or supposecological literature ¶ • → The candidate vital sign provides relevant informat that is applicable to multiple scales of ecological organization ¶	eand ¶ edito O¶ conting ¶ ¶		
Response Variability¶	erf of fi	# # # # # # # # # # # # # # # # # # #	

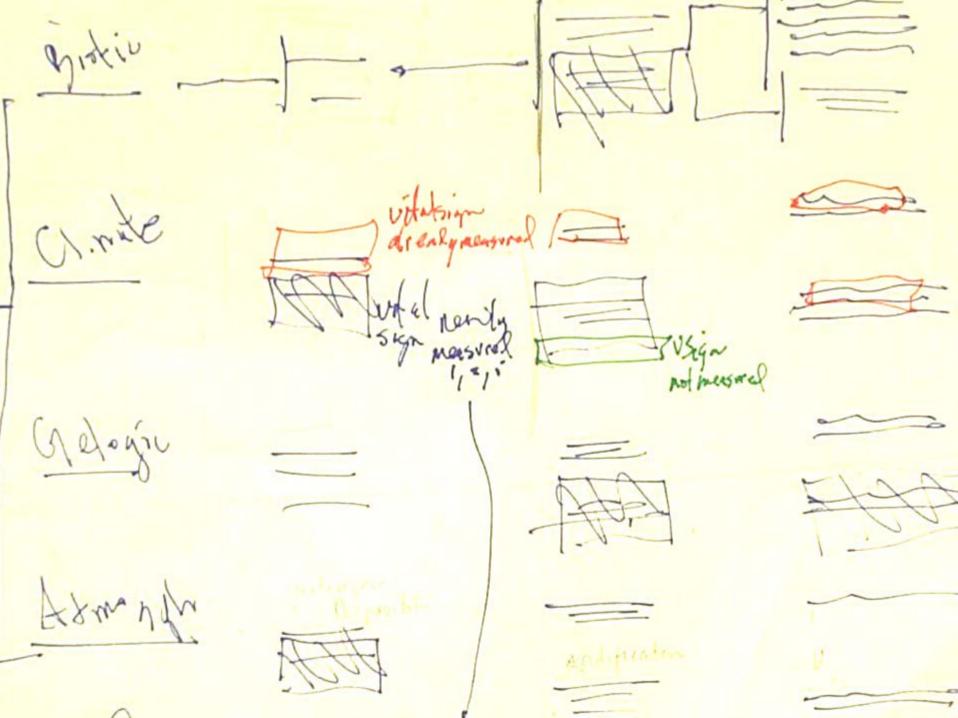
Vital Sign Scoring Methods

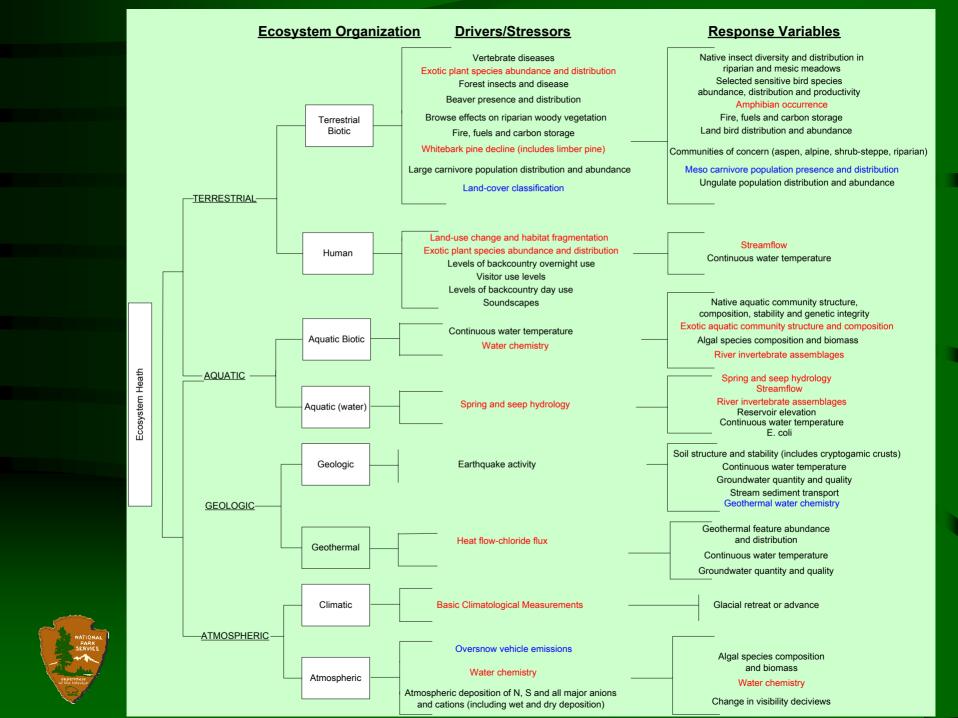

- ecological relevance = 25%
- response variability = 25%
- management relevance = 20%
- Feasibility of implementation = 15%
- Interpretation and utility = 15%

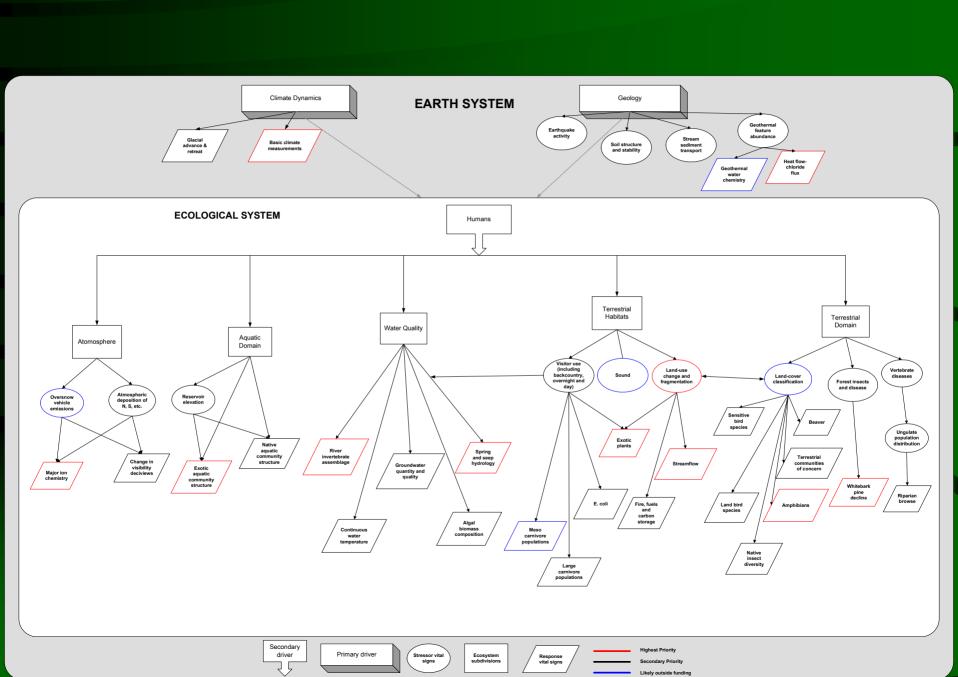
- If two criteria, then
 - two yes answers = 1.0 score
 - one yes answer = 0.5 score
 - two no answers = 0.0 score
- If three criteria, then
 - three yes answers = 1.0
 - two yes answers = 0.6
 - one yes answer = 0.3
 - Three 3 answers = 0.0



R	U	U	E	F	G
organization S		Candidate Vital Sign	GRTE	YELL	BICA
Water Quality	1.00	Ground water hydrology	х	x	x
Water Quality	1.00	Reservoir elevation	x		x
Water Quality	1.00	Streamflow	x	x	x
Water Quality	0.95	Algal species composition and biomass	x	x	x
Water Quality	0.95	Continuous water temperature (Lakes and Resevoirs)	x	x	x
Water Quality	0.95	Continuous water temperature (Rivers and Streams; Lakes and Resevoirs)	х	х	x
Water Quality	0.95	Ground water chemistry	х	х	x
Water Quality	0.95	Major ion chemistry (Rivers and Streams; Lakes and Resevoirs)	х	х	x
Water Quality	0.95	River invertebrate assemblages	х	х	x
Terrestrial Vertebrates	1.00	Amphibian occurrence	х	х	Х
Terrestrial Vertebrates	1.00	Beaver presence and population estimates	х	х	Х
Terrestrial Vertebrates	1.00	Pattern of non-park land-use changes	х	х	Х
Terrestrial Vertebrates	0.92	Invasive vertebrate species richness and distribution	х	х	x
Terrestrial Vertebrates	0.92	Vertebrate diseases	х	х	x
Terrestrial Vegetation	1.00	Grassland vegetation community composition and structure	х	х	x
Terrestrial Vegetation	0.95	Alpine plant community characteristics	х	х	
Terrestrial Vegetation	0.95	Lichen distribution, abundance and chemical composition	х	х	x
Terrestrial Vegetation	0.95	Shrubland community composition and structure	х	х	х
Terrestrial Vegetation	0.92	Aspen community composition and structure	х	х	
Terrestrial Vegetation	0.92	Browse effects on riparian woody vegetation	х	х	х
Terrestrial Vegetation	0.92	Fire and fuel loading	х	х	х
Terrestrial Vegetation	0.92	Lodgepole pine plant community composition and exotic species	х	х	
Terrestrial Vegetation	0.92	Mixed conifer plant community composition and exotic species		х	




Lessons learned: Prioritizing vital signs


- Experts offered important knowledge and had good discussion on the proposed candidate vital signs
- The use of yes/no questions was key to progress during the workshop.
- A pre-workshop- trail run using the selection criteria can help eliminate questions about semantics and highlight questions that need to be answered before the actual ranking process.

